If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-18x-5=9
We move all terms to the left:
8x^2-18x-5-(9)=0
We add all the numbers together, and all the variables
8x^2-18x-14=0
a = 8; b = -18; c = -14;
Δ = b2-4ac
Δ = -182-4·8·(-14)
Δ = 772
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{772}=\sqrt{4*193}=\sqrt{4}*\sqrt{193}=2\sqrt{193}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{193}}{2*8}=\frac{18-2\sqrt{193}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{193}}{2*8}=\frac{18+2\sqrt{193}}{16} $
| 4x-23-17=180 | | 10x+7=8x-17 | | 0.50x+10.5=33.5 | | 31=7-4x | | -4.4x-16.28=17.6 | | 15x22=23 | | 2x-21=3x-4 | | 3(3x+2)=-3x+30 | | 8x-7+5x+2=0 | | 5x-(2x+5)=-8 | | 3/4(8+2x)=3 | | -4x^2+84=4 | | -7=b=-8 | | 5x-28=0 | | 19=4a+7a-3 | | -50=x16-14 | | -7.2x-18=21.6 | | 4y-9+y+59=6y+50-3y | | -2y-9+7y=11 | | −5(2x+4)+x+3=-8 | | 4.6+10m=8.35 | | 32+2y=180 | | 4=b=30 | | 4.6+10m=8,35 | | 21=1/2x+6 | | x/3=31/2 | | |2x+7|=6x+13 | | 4x-1+5x-11=0 | | -3m-5=5m-1 | | X/12+3x/20=x/16 | | 〖4t〗^2-196=0 | | y=1/2+9 |